My research focuses on decision-making in animals. I study how an individual's foraging, mating and social behavior are influenced by its phenotype, by ecological circumstances, and by the actions of other individuals in the population. I develop simple mathematical models to generate predictions that can be tested using data gathered from structured field observations or experimental manipulations. In this way I search for general principles, or 'rules', that underlie complex patterns of behavior.
Much of my recent research on the adaptive value of behavior has centered on understanding the social dynamics of equids—horses, zebras and asses. My studies have shown that as the distributions of forage and water change, the patterns of female movement and association change. In turn, the ways in which males compete to mate with females also change. Thus ecological features play a large role in shaping equid core social groups.
But some harem dwelling equids, in particular the Plains zebras, exhibit additional layers of social structuring and my latest research shows that the force that matters most in determining whether or not herds form is a social one. The magnitude of the risk associated of a stallion being cuckolded determines whether or not harem males join together to form alliances. How risks are assessed, decisions are made and how conflicts of interest among individuals of differing phenotypes with differing needs are avoided is the focus of my ongoing research into the control of behavior.
Melding both functional and mechanistic approaches to studying animal behavior is an important problem in the emerging area of 'Biocomplexity' and is one that requires interdisciplinary studies that cut across many scales. My latest research focuses on one such problem—the rules governing animal movements and migration—and involves the interaction of 'self-organizing' behavioral movement rules, ecological information, and habitat structure at multiple spatial scales to understand how migratory animal movements respond to human induced land use change and how these changes in movement in turn affect population stability. Conservation implications are actively being explored.
Media Coverage
- The logic behind Rubenstein’s behavioral science-based approach to changing COVID-19 attitudes
- The Science Show interviews Dan Rubenstein: How an oil pipeline route was changed to save an endangered Kenyan zebra using artificial intelligence
- Student films examine needs of humans and wildlife in Kenya
- H2O World San Francisco 2019
- Lessons from Lemurs
- New Princeton course Agriculture, Human Diets and the Environment
- I am AI Docuseries, Episode 6: Running Wild for Nature Conservation
- Bringing people together as scientists to save a zebra species
- Wild science: The nature of the Mpala Research Centre
- The Kids Twiga Tally: creating young conservation scientists in Kenya
- If not for camouflage, why do zebras have stripes?
- From Animals to AI: New Directions in Leadership Research
The gastrointestinal nematodes of plains and Grevy's zebras: Phylogenetic relationship and host specificity. International Journal for Parasitology
A new classification of mammalian uni-male multi-female groups based on the fundamental principles governing inter-and intrasexual relationships. Behavioral Ecology and Sociobiology
Body size and digestive system shape resource selection by ungulates: A cross‐taxa test of the forage maturation hypothesis. Ecology Letters
Bothersome Flies: How Free-Ranging Horses Reduce Harm While Maintaining Nutrition. Frontiers in Ecology and Evolution
Land use influence on distribution and abundance of herbivores in Samburu-Laikipia, Kenya. Journal of Sustainability, Environment and Peace